A uniqueness theorem for hyperharmonic functions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Uniqueness Theorem for Clustering

Despite the widespread use of Clustering, there is distressingly little general theory of clustering available. Questions like “What distinguishes a clustering of data from other data partitioning?”, “Are there any principles governing all clustering paradigms?”, “How should a user choose an appropriate clustering algorithm for a particular task?”, etc. are almost completely unanswered by the e...

متن کامل

Titchmarsh theorem for Jacobi Dini-Lipshitz functions

Our aim in this paper is to prove an analog of Younis's Theorem on the image under the Jacobi transform of a class functions satisfying a generalized Dini-Lipschitz condition in the space $mathrm{L}_{(alpha,beta)}^{p}(mathbb{R}^{+})$, $(1< pleq 2)$. It is a version of Titchmarsh's theorem on the description of the image under the Fourier transform of a class of functions satisfying the Dini-Lip...

متن کامل

Nearly hyperharmonic functions and Jensen measures

Let (X,H) be a P-harmonic space and assume for simplicity that constants are harmonic. Given a numerical function φ on X which is locally lower bounded, let Jφ(x) := sup{ ∫ ∗ φdμ(x) : μ ∈ Jx(X)}, x ∈ X, where Jx(X) denotes the set of all Jensen measures μ for x, that is, μ is a compactly supported measure on X satisfying ∫ u dμ ≤ u(x) for every hyperharmonic function on X. The main purpose of t...

متن کامل

The uniqueness theorem for inverse nodal problems with a chemical potential

In this paper, an inverse nodal problem for a second-order differential equation having a chemical potential on a finite interval is investigated. First, we estimate the nodal points and nodal lengths of differential operator. Then, we show that the potential can be uniquely determined by a dense set of nodes of the eigenfunctions.

متن کامل

A uniqueness theorem for solution of BSDEs

where W is a standard d-dimensional Brownian motion on a probability space (Ω,F , (Ft)0≤t≤T , P ) with (Ft)0≤t≤T the filtration generated by W . The function g : Ω × [0, T ] × R × R → R is called generator of (1.1). Here T is the terminal time, and ξ is a R-valued FT -adapted random variable; (g, T, ξ) are the parameters of (1.1). The solution (yt, zt)t∈[0,T ] is a pair of Ft-adapted and square...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1985

ISSN: 0022-247X

DOI: 10.1016/0022-247x(85)90259-8